22 research outputs found

    Hepatocyte Growth Factor Reduces Free Cholesterol-Mediated Lipotoxicity in Primary Hepatocytes by Countering Oxidative Stress

    Get PDF
    Cholesterol overload in the liver has shown toxic effects by inducing the aggravation of nonalcoholic fatty liver disease to steatohepatitis and sensitizing to damage. Although the mechanism of damage is complex, it has been demonstrated that oxidative stress plays a prominent role in the process. In addition, we have proved that hepatocyte growth factor induces an antioxidant response in hepatic cells; in the present work we aimed to figure out the protective effect of this growth factor in hepatocytes overloaded with free cholesterol. Hepatocytes from mice fed with a high-cholesterol diet were treated or not with HGF, reactive oxygen species present in cholesterol overloaded hepatocytes significantly decreased, and this effect was particularly associated with the increase in glutathione and related enzymes, such as γ-gamma glutamyl cysteine synthetase, GSH peroxidase, and GSH-S-transferase. Our data clearly indicate that HGF displays an antioxidant response by inducing the glutathione-related protection system

    Tumor immune microenvironment modulation by cholesterol in hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is considered one of the most aggressive tumors worldwide. The consumption of lipid-enriched diets, mainly high cholesterol, induces oxidative stress and chronic inflammation, leading to HCC progression. Moreover, fatty acids and cholesterol could display differential responses on immune cells inside the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) represent one of the most critical leukocytes in the tumor microenvironment (TME) displaying pro-tumoral responses and one of the mainly cholesterol donors to cancer cells. Immunotherapy or cholesterol regulators, alone or combined, would represent an effective strategy for HCC treatment. Nonetheless, steatotic etiology from non-alcoholic fatty liver disease (NAFLD)-HCC tumors has been unexpectedly resulting in highly aggressive behavior

    Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes

    Get PDF
    Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC) diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER) stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol

    The hepatocyte growth factor induces an anti-inflammatory and repairing response in the cholestasis-induced colon damage

    Get PDF
    Aim: Cholestasis remains a partially characterized disease. Evidence has been gained that it is a systemic disease that begins in the liver but significantly impacts other organs and systems such as the kidney, heart, and intestine, among others. One of the primary damage mechanisms is the generation of reactive oxygen species (ROS), which eventually leads to oxidative stress, impacting canalicular morphology and actin cytoskeleton changes that could worsen the problem. These characteristics are also observed in the kidney and intestine. The work focused on addressing the intestine effects of intrahepatic cholestasis induced by α-naphthyl isothiocyanate (ANIT) and the protective response of the hepatocyte growth factor (HGF). Methods: The 10- to 12-week-old CD1 male mice were treated with ANIT and then treated or not with HGF; intestine damage was addressed by histology, immunohistochemistry (IHC) of specific markers, oxidative stress, and apoptosis. Results: Results show changes in the intestine histology, particularly the colon and ileum, induced by the cholestasis. HGF treatment restored the histology presentation and reverted the oxidative damage, clearly indicating a healing response. This observation was supported by an increment in anti-inflammatory macrophages (CD163+) in the HGF treatment. Conclusions: The data prove that HGF induces a protective and repairing response in the intestine under cholestatic challenges

    Free fatty acids enhance the oxidative damage induced by ethanol metabolism in an in vitro model

    Get PDF
    In recent years, there has been a growing interest to explore the responsiveness to injury in steatotic hepatocyte. VL-17A cells, which express ADH and Cyp2E1 overloaded with free fatty acids (1mM of oleic and palmitic acid 2:1) showed an increased oxidative damaged after 24 h free fatty acids treatment when exposed to ethanol (100 mM) for 48 h as a second injury. An increment in reactive oxygen species, determined by DCFH-DA, protein oxidation, and apoptosis were observed although an increase in main antioxidant proteins such as superoxide dismutase 1 and glutathione peroxidase were observed, but failed in gamma-glutamylcysteine synthetase, suggesting a decreased capacity of synthesis of glutathione compared with cells treated only with free fatty acids or ethanol. The increased oxidative stress and toxicity in lipid overloaded VL-17A cells subjected to ethanol exposure were accompanied by increases in Cyp2E1 protein expression. Our data show that lipid loaded in an in vitro model, VL-17A cells, is more susceptible to cell damage and oxidative stress when treated with ethanol

    Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat Myotis vivesi.

    No full text
    Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage

    Fructose Consumption and Hepatocellular Carcinoma Promotion

    No full text
    Hepatocellular carcinoma (HCC) accounts for 85% of primary liver cancer, the third most common cause of cancer-related deaths worldwide. Its incidence has been increasing in both men and women. In Western countries, high-calorie diets, mainly rich in carbohydrates such as fructose, represent a significant concern due to their repercussions on the population’s health. A high-fructose diet is related to the development of Metabolic-Associated Fatty Liver Disease (MAFLD), formerly named Non-Alcoholic Fatty Liver Disease (NAFLD), and the progression of HCC as it potentiates the lipogenic pathway and the accumulation of lipids. However, fructose metabolism seems to be different between the stages of the disease, carrying out a metabolic reprogramming to favor the proliferation, inflammation, and metastatic properties of cancer cells in HCC. This review focuses on a better understanding of fructose metabolism in both scenarios: MAFLD and HCC

    Acute stress stimuli impact on physiological markers.

    No full text
    <p>Change in SOD, CAT and GPx activity (mean ± SD). Asterisks indicate significant differences in the response between basal and post-stress levels based on Student’s t-tests. Bold numbers inside bars indicate sample sizes.</p

    Seasonal swelling response after 12 hours of PHA injection.

    No full text
    <p>A) Data separated by sex from P1. B) Combined data from P1 (estimated marginal mean ± SE). C) Data separated by sex from P2. Pink arrows represent seasonal variation in the swelling response in females; black arrows represent seasonal changes in swelling response in males. D) Combined data from P2 (estimated marginal mean ± SE); different letters indicate significant differences among seasons.</p
    corecore